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The formula GoHyo includes a series of bowl-shaped carbon-
rich structures wherein corannuler (epresents = 2, and the
simplest capped nanotubeyB1 (2), represents = 4.1 The class
of n = 4 is also represented by another isomeric structure,
decaethynylcorannulen8)( A simple bond-energy estimate for the
energetics ofd compared with that of results in a remarkable
value of 306-400 kcal/mol in favor o2.2 The conceptual synthesis
of 3 from 1 via decachlorocorannulend)(and the potential 08 Figure 1. Line drawing and space filling models &f
as a direct precursor @via Bergman cyclizatiohis so attractive
in its simplicity as to be irresistible. Such an approach would open
a solution-phase method to the synthesis of monodispersed single-
walled carbon nanotubes (SWCNT) frgrar-ethynylcorannulenes.

Figure 2. Line drawing and space filling models 6f

Table 1. Geometry of 1, 2, 3, and 5

rim
Per-ethynylated polynuclear aromatic hydrocarbons (PAHSs) OO‘
should be accessible from their perhalo cognétBalister per- @
halogentation conditions produdein one step froni,> which is flank .O
now available in multigram scale in five stepReaction of4 and y
an excess of stannylpentyne in DME with Pd(OAahd IPr-HCI spoke
(IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-yliderigjelds 5
directly, in modest yield (ca. 10%), plus the novel ring expanded 12 v 2 3 5
product 6) (ca. 18%); an X-ray crystal structure for each was hub (A) 1.415(2) 1.420 1.453(1.453) 1.412 1.403(6)
determined (Figures 1 and Q) spoke (A) 1.379(2) 1.388 1.392(1.410) 1.378 1.376(6)
flank (A) 1.446(2) 1.449 1.444 (1.445) 1.464 1.455(6)

_ The str_ucture 95 is flatter thanl and has a Ionge.r rim bond but rim 1383(2) 1392 1402(L416) 1436 1.430(6)
is otherwise similar (Table 1). The crystallographic core structure ;. mank (deg) 121.2(1) 122.0 119.5(119.6) 121.7 121.5(3)

of 5 agrees with that calculated f@ (B3LYP/cc-pVDZ) within flank/flank (deg) 129.9(1) 130.1 106.8 (1070)133.6 132.9(4)
0.01 A for bond lengths and ca for bond angle§.The geometrical rim-sp (A) 1.426  1.430(7)
patterns and trends are the same. Similar computation® on acetylenic (A) 1.214 1.190(7)

(B3LYP/cc-pVDZ) show that the bowl depth and [5]radialene gh“'“p"ke(A) 0.036(3) 0.032 0.061(0.044) 0034 0.027(8)

character increase monotonically for the ser3§5}, 1, 2. The bowl

depth and radialene character of the closed fullerengsrd Go, aM. A. Petrukhina, K. W. Andreini, J. Mack, L. T. Scoft, Org. Chem.

are less than fa2. MP2/cc-pVDZ//B3LYP/cc-pVDZ computational 2005 70, 5713.° Caled B3LYP/cc-pVDZ(MP2/cc-pVDZ): Exptl avg from

energy differences of and3 (388.3 [364.5 ZPE] kcal/mol) support  this work.¢ Measured on the £ core.

the estimates made by using simple bond-energy arguments.

Nonetheless; (decapropyl3) appears to be kinetically inert to the

formation of decapropy® up to 100°C. /
Despite having well-formed crystals &, weak diffraction

required use of a synchrotron light source. Three molecular units

are observed in the asymmetric unit. Stacking disorder is evident —

from the observed diffuse scattering. DifferenEeurier maps

revealed at least three orientations for two of the molecular units

and two for the third; the nonpolar disc form @&llows it to pack The structure 06 is planar, and is a rare type of [10]annuléfe,

in nearly random orientations. A model of these eight orientations comprising two “cumulenyl/alkynyl” linkages (Figure 3). Quantum

was refined using extensive bond length and angle similarity mechanical and X-ray crystallographic geometrie§ sfiggest that

restraints R = 0.12)5% the alkynyl resonance form dominates (TabléZ)he alkynyl form

epthuorm(A)  0.87 0.87 1.53(1.54) 0.58 0.60

[

Figure 3. Two resonance forms of the [10]annulene fragmen6.of

12612 = J. AM. CHEM. SOC. 2007, 129, 12612—12613 10.1021/ja074403b CCC: $37.00 © 2007 American Chemical Society



COMMUNICATIONS

Table 2. Geometry of the [10Jannuene Fragment of 6

/o
[
length (&) exptl avg calcd? angle (deg)  exptl avg calcd?

a 1.387(9) 1.384(1.401) olo' 116.4 118.5(118.5)
b/t 1.427(9) 1.398(1.399) pIp 164.6 162.1(160.7)
c/c 1.203(9) 1.228 (1.257) yly' 176.5 177.9(179.9)
d/id 1.411(9) 1.404 (1.403) 0o/o' 123.8 123.3(122.7)
elé 1.401(9) 1.411(1.423) «el€ 137.5 138.2(138.1)
f 1.475(9) 1.481 (1.469)
r 3.113(9) 3.170(3.139)

aCalcd B3LYP/cc-pVDZ(MP2/cc-pVDZ).

Figure 4. Conceptual enediyne cyclization 8fto [10]Jannulene ) via
the diradical 8).

would retain the [5]radialene core found generally for corannulene

derivatives. The cumulene/alkynyl linkages kink in such a way as

to betray a substantial transannular interaction and give rise to a
short “nonbonded” carbercarbon contactr” (ca. 3.1 A)12

The formation of6 can be deduced to have come from the
enediyne cyclization anticipated for the formation 2from 3.3
Instead of inducing a radical cyclization cascade or picking up two
hydrogen atoms from the surroundings, the in situ formed napth-
yldiradical homolytically opens its central bond to yiédFigure
4). A possible explanation for the novel reactivity of the diradical
is that the flanking alkyne groups are too distant to enter the radical
cascade but close enough to block interactions with solvent or
hydrogen donors, thus making the ring-opening pathway vigfe.
The challenge remains to find conditions which direct the diradical
intermediate into the cascade and to analogues of

The [10]annulené should benefit energetically from a reduction
of overall ring strain and the stabilization associated with a 10-
electron aromatic cycle. Full MP2/cc-pVDZ plagea. 20.9 (19.2
ZPE) kcal/mol lower in energy thaB; however, computational
energies for simple 1,2-diethynylbenzeneg{g) and its dicumulenyl-
[10]annulene isomer (fgHs) suggests that the parent rearrangement
would be ca. 17.8 (18.7 ZPE) kcal/mol endothermic. Thus, this
fragment seems to be stabilized by its incorporation into the PAH
network.

Computed physical properties of derivatives2ofe.g., near IR
absorption at 550 and 894 nm, dipole moment of 5.6 D, and thermal
stability) all speak to the possibilities for this structure to be of
great use in materials chemistry. Cogna&esn be viewed as the
first members in the series of 5-fold symmetric SWCNT and

potential seed compounds for the preparation of monodisperse

higher order SWCNT. Given the efficient synthesislond the
relatively short way froml via 4 to 5, there would seem to be
good reasons to be optimistic about finding efficient conditions for
solution-phase syntheses of SWCNTSs.
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